Global scenarios of household access to modern energy services under climate mitigation policy – Nature.com

Energy Disrupter

  • 1.

    Bazilian, M. et al. Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. Util. Policy 20, 1e16 (2012).

    Article  Google Scholar 

  • 2.

    Dalla Longa, F. & van der Zwaan, B. Heart of light: an assessment of enhanced electricity access in Africa. Renew. Sustain. Energy Rev. 136, 110399 (2021).

    Article  Google Scholar 

  • 3.

    Dagnachew, A. G. et al. The role of decentralized systems in providing universal electricity access in sub-Saharan Africa—a model-based approach. Energy 139, 184–195 (2017).

    Article  Google Scholar 

  • 4.

    Pachauri, S. et al. Pathways to achieve universal household access to modern energy by 2030. Environ. Res. Lett. 8, 021015 (2013).

    Article  Google Scholar 

  • 5.

    Pachauri, S., Alstone, P., Rao, N. D. & Cameron, C. Outlook for modern cooking energy access in Central America. PLoS ONE https://doi.org/10.1371/journal.pone.0197974 (2018).

  • 6.

    Panos, E., Densing, M. & Volkart, K. Access to electricity in the World Energy Council’s global energy scenarios: an outlook for developing regions until 2030. Energy Strateg. Rev. 9, 28–49 (2016).

    Article  Google Scholar 

  • 7.

    Van de Ven, D.-J. et al. Integrated policy assessment and optimisation over multiple Sustainable Development Goals in Eastern Africa. Environ. Res. Lett. 14, 094001 (2019).

    Article  Google Scholar 

  • 8.

    Kartha, S., Kemp-Benedict, E., Ghosh, E., Nazareth, A. & Gore, T. The Carbon Inequality Era: An Assessment of the Global Distribution of Consumption Emissions Among Individuals from 1990 to 2015 and Beyond (Stockholm Environment Institute and Oxfam International, 2020); https://www.sei.org/publications/the-carbon-inequality-era/

  • 9.

    Oswald, Y., Owen, A. & Steinberger, J. K. Large inequality in international and intranational energy footprints between income groups and across consumption categories. Nat. Energy 5, 231–239 (2020).

    Article  Google Scholar 

  • 10.

    Falchetta, G., Pachauri, S., Byers, E., Danylo, O. & Parkinson, S. C. Satellite observations reveal inequalities in the progress and effectiveness of recent electrification in sub-Saharan Africa. One Earth 2, 364–379 (2020).

    Article  Google Scholar 

  • 11.

    Mastrucci, A., Byers, E., Pachauri, S. & Rao, N. D. Improving the SDG energy poverty targets: residential cooling needs in the Global South. Energy Build. https://doi.org/10.1016/j.enbuild.2019.01.015 (2019).

  • 12.

    Tracking SDG 7: The Energy Progress Report: Progress Towards Sustainable Energy (Energy Sector Management Assistance Program, 2021); https://trackingsdg7.esmap.org/

  • 13.

    Putti, V. R., Tsan, M., Mehta, S. & Kammila, S. The State of the Global Clean and Improved Cooking Sector (ESMAP and GACC, 2015); https://openknowledge.worldbank.org/bitstream/handle/10986/21878/96499.pdf

  • 14.

    Ayaburi, J., Bazilian, M., Kincer, J. & Moss, T. Measuring ‘Reasonably Reliable’ access to electricity services. Electr. J. 33, 106828 (2020).

    Google Scholar 

  • 15.

    Rao, N. D., Min, J. & Mastrucci, A. Energy requirements for decent living in India, Brazil and South Africa. Nat. Energy 4, 1025–1032 (2019).

    Article  Google Scholar 

  • 16.

    Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65, e102168 (2020).

    Article  Google Scholar 

  • 17.

    Chakravarty, S. & Tavoni, M. Energy poverty alleviation and climate change mitigation: is there a trade off? Energy Econ. 40, S67–S73 (2013).

    Article  Google Scholar 

  • 18.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article  Google Scholar 

  • 19.

    Daioglou, V., van Ruijven, B. J. & van Vuuren, D. P. Model projections for household energy use in developing countries. Energy 37, 601–615 (2012).

    Article  Google Scholar 

  • 20.

    Waite, M. et al. Global trends in urban electricity demands for cooling and heating. Energy 127, 786–802 (2017).

    Article  Google Scholar 

  • 21.

    Serrano, S., Ürge-Vorsatz, D., Barreneche, C., Palacios, A. & Cabeza, L. F. Heating and cooling energy trends and drivers in Europe. Energy 119, 425–434 (2017).

    Article  Google Scholar 

  • 22.

    Ürge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C. & Petrichenko, K. Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85–98 (2015).

    Article  Google Scholar 

  • 23.

    Cao, X., Dai, X. & Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 128, 198–213 (2016).

    Article  Google Scholar 

  • 24.

    O’Neill, B. C. et al. The roads ahead: narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  • 25.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  • 26.

    Samir, K. C. & Lutz, W. The human core of the Shared Socioeconomic Pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  Google Scholar 

  • 27.

    Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Environ. Change 42, 193–199 (2017).

    Article  Google Scholar 

  • 28.

    Crespo Cuaresma, J. Income projections for climate change research: a framework based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).

    Article  Google Scholar 

  • 29.

    Rao, N. D., Sauer, P., Gidden, M. & Riahi, K. Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures 105, 27–39 (2019).

    Article  Google Scholar 

  • 30.

    McCollum, D. L. et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).

    Article  Google Scholar 

  • 31.

    Cabeza, L. F., Urge-Vorsatz, D., McNeil, M. A., Barreneche, C. & Serrano, S. Investigating greenhouse challenge from growing trends of electricity consumption through home appliances in buildings. Renew. Sustain. Energy Rev. 36, 188–193 (2014).

    Article  Google Scholar 

  • 32.

    Rao, N. D. & Ummel, K. White goods for white people? Drivers of electric appliance growth in emerging economies. Energy Res. Soc. Sci. 27, 106–116 (2017).

    Article  Google Scholar 

  • 33.

    Mainali, B., Pachauri, S. & Nagai, Y. Analyzing cooking fuel and stove choices in China till 2030. J. Renew. Sustain. Energy 4, 031805 (2012).

    Article  Google Scholar 

  • 34.

    Thomas, S. & Rosenow, J. Drivers of increasing energy consumption in Europe and policy implications. Energy Policy 137, 111108 (2020).

    Article  Google Scholar 

  • 35.

    Isaac, M. & van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  • 36.

    Khosla, R. et al. Cooling for sustainable development. Nat. Sustain. https://doi.org/10.1038/s41893-020-00627-w (2020).

  • 37.

    van Ruijven, B. J., De Cian, E. & Sue Wing, I. Amplification of future energy demand growth due to climate change. Nat. Commun. 10, 2762 (2019).

    Article  Google Scholar 

  • 38.

    Poblete-Cazenave, M. & Pachauri, S. A model of energy poverty and access: estimating household electricity demand and appliance ownership. Energy Econ. 98, 105266 (2021).

    Article  Google Scholar 

  • 39.

    Lange, S. EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-Corrected for ISIMIP (EWEMBI) (GFZ Data Services, 2016); https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:3928916

  • 40.

    Energy-efficient Design of Low-rise Residential Buildings (ASHRAE, 2004).

  • 41.

    Poblete-Cazenave, M. & Pachauri, S. A Simulation-based Estimation Model of Household Electricity Demand and Appliance Ownership (MPRA, 2020).

  • 42.

    Gourieroux, C., Monfort, A. & Renault, E. Indirect inference. J. Appl. Econom. 8, S85–S118 (1993).

    Article  Google Scholar 

  • 43.

    Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model. Softw. 112, 143–156 (2019).

    Article  Google Scholar 

  • Original Source: https://www.nature.com/articles/s41560-021-00871-0